Hosoya Polynomials and Wiener Indices of Distances in Graphs

Hosoya Polynomials and Wiener Indices of Distances in Graphs

AngličtinaMäkká väzbaTlač na objednávku
Ali, Ahmed M. S.
LAP Lambert Academic Publishing
EAN: 9783845401010
Tlač na objednávku
Predpokladané dodanie v pondelok, 3. februára 2025
62,25 €
Bežná cena: 69,17 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

In this work, we deal with three types of distances, namely ordinary distance, the minimum distance (n-distance), and the width distance (w-distance). The ordinary distance between two distinct vertices u and v in a connected graph G is defined as the minimum of the lengths of all u-v paths in G, and usually denoted by dG(u,v), or d(u,v).The minimum distance in a connected graph G between a singleton vertex v belong to V and (n-1)-subset S of V , n 2, denoted by dn(u,v) and termed n-distance, is the minimum of the distances from v to the vertices in S.The container between two distinct vertices u and v in a connected graph G is defined as a set of vertex-disjoint u-v paths, and is denoted by C(u,v). The container width w = w(C(u,v)) , is the number of paths in the container, i.e.,w(C(u,v)) = C(u.v) . The length of a container l = l(C(u,v)) is the length of a longest path in C(u,v).For every fixed positive integer w, the width distance (w-distance) between u and v is defined as: dn (u,v G)= min l(C(u,v)) ,where the minimum is taken over all containers C(u,v) of width w. Assume that the vertices u and v are distinct when w 2.
EAN 9783845401010
ISBN 384540101X
Typ produktu Mäkká väzba
Vydavateľ LAP Lambert Academic Publishing
Dátum vydania 7. júla 2011
Stránky 148
Jazyk English
Rozmery 229 x 152 x 9
Krajina Germany
Čitatelia General
Autori Ali, Ahmed M. S.; Ali, Ali A.; Ismail, Tahir H.