q-Fractional Calculus and Equations

q-Fractional Calculus and Equations

EnglishEbook
Annaby, Mahmoud H.
Springer Berlin Heidelberg
EAN: 9783642308987
Available online
€69.46
Common price €77.18
Discount 10%
pc

Detailed information

This nine-chapter monograph introduces a rigorous investigation of q-difference operators in standard and fractional settings. It starts with elementary calculus of q-differences and integration of Jackson's type before turning to q-difference equations. The existence and uniqueness theorems are derived using successive approximations, leading to systems of equations with retarded arguments. Regular q-Sturm-Liouville theory is also introduced; Green's function is constructed and the eigenfunction expansion theorem is given. The monograph also discusses some integral equations of Volterra and Abel type, as introductory material for the study of fractional q-calculi. Hence fractional q-calculi of the types Riemann-Liouville; Grunwald-Letnikov; Caputo; Erdelyi-Kober and Weyl are defined analytically. Fractional q-Leibniz rules with applications in q-series are also obtained with rigorous proofs of the formal results of Al-Salam-Verma, which remained unproved for decades. In working towards the investigation of q-fractional difference equations; families of q-Mittag-Leffler functions are defined and their properties are investigated, especially the q-Mellin-Barnes integral and Hankel contour integral representation of the q-Mittag-Leffler functions under consideration, the distribution, asymptotic and reality of their zeros, establishing q-counterparts of Wiman's results. Fractional q-difference equations are studied; existence and uniqueness theorems are given and classes of Cauchy-type problems are completely solved in terms of families of q-Mittag-Leffler functions. Among many q-analogs of classical results and concepts, q-Laplace, q-Mellin and q2-Fourier transforms are studied and their applications are investigated.
EAN 9783642308987
ISBN 3642308988
Binding Ebook
Publisher Springer Berlin Heidelberg
Publication date August 27, 2012
Language English
Country Germany
Authors Annaby, Mahmoud H.; Mansour, Zeinab S.
Series Lecture Notes in Mathematics