Agent and Multi-Agent Systems: Technologies and Applications

Agent and Multi-Agent Systems: Technologies and Applications

EnglishPaperback / softback
Springer, Berlin
EAN: 9783642135408
On order
Delivery on Tuesday, 4. of February 2025
€50.60
Common price €56.22
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Banská Bystrica
not available
Oxford Bookshop Bratislava
not available
Oxford Bookshop Košice
not available

Detailed information

Presented experiments show that usage ofevolutionary approach to feature - duction is justi?ed.Feature selection as well as construction gives goodresults. It is noticeable that attribute construction's best results assign higher classi?- tion accuracy than feature selection alone.That is why, carrying out selection before construction to decrease searchingspace isagoodsolution. Because of indeterministicbehavior of neuralnetworks,it was di?cultto - ducefeaturesetincaseofusingthemto evaluatecandidateresults.Forexample, aneuralnetworklearntverywellondatathatwasdescribedbyfullattributeset, but when thisset was decreased it had huge problems to do this duringrequired number ofepochs.That suggests that usingC4.5 ismuchmore preferred. Numerous experiments havebeen performed and observed.Analysis ofabove results allowsto put the hypothesisthat it is worth to use Construction module as the feature set reduction. But experiments show that Constructormodule does not work sowell whenitusesthe whole initial set offeatures - the search space istoo large.Soit is worth to use ?rstly Selectorand nextConstructor. The second important issue isthatConstructor destructs the semanticmeaning of the features.New constructed features are notunderstandableforusers.In some real-liveproblems measuring offeature values isquite expensive, forsuch problems selector seems to be more suitable because itdiminishes a number of realfeatures.To constructonefeaturesa number ofreal(measured)featurescan be required. Obtainedresults haveencouragedus to extendour system,especiallythe c- structormodule.Weplan to developenlarged set offunctionsFwhich allowsto use the system with data containingdi?erenttype offeatures,not only nume- cal. Such system will be veri?ed usingagreater number ofbenchmark data sets as well as real data. Acknowledgments. This work ispartially ?nanced fromthe Ministryof S- ence and Higher Education Republic of Polandresources in 2008-2010 years as a Poland-Singapore joint research project 65/N-SINGAPORE/2007/0.
EAN 9783642135408
ISBN 3642135404
Binding Paperback / softback
Publisher Springer, Berlin
Publication date June 9, 2010
Pages 443
Language English
Country Germany
Readership Professional & Scholarly
Illustrations XVIII, 443 p. 147 illus.
Editors Howlett, Robert J.; Jain, Lakhmi C; Jedrzejowicz Piotr; Nguyen, Ngoc-Thanh
Edition 2010 ed.
Series Lecture Notes in Artificial Intelligence