Analytic Theory of Itô-Stochastic Differential Equations with Non-smooth Coefficients

Analytic Theory of Itô-Stochastic Differential Equations with Non-smooth Coefficients

EnglishPaperback / softbackPrint on demand
Lee, Haesung
Springer Verlag, Singapore
EAN: 9789811938306
Print on demand
Delivery on Tuesday, 25. of February 2025
€48.40
Common price €53.77
Discount 10%
pc
Do you want this product today?
Oxford Bookshop Banská Bystrica
not available
Oxford Bookshop Bratislava
not available
Oxford Bookshop Košice
not available

Detailed information

This book provides analytic tools to describe local and global behavior of solutions to Itô-stochastic differential equations with non-degenerate Sobolev diffusion coefficients and locally integrable drift. Regularity theory of partial differential equations is applied to construct such solutions and to obtain strong Feller properties, irreducibility, Krylov-type estimates, moment inequalities, various types of non-explosion criteria, and long time behavior, e.g., transience, recurrence, and convergence to stationarity. The approach is based on the realization of the transition semigroup associated with the solution of a stochastic differential equation as a strongly continuous semigroup in the Lp-space with respect to a weight that plays the role of a sub-stationary or stationary density. This way we obtain in particular a rigorous functional analytic description of the generator of the solution of a stochastic differential equation and its full domain. The existence of such a weight is shown under broad assumptions on the coefficients. A remarkable fact is that although the weight may not be unique, many important results are independent of it. Given such a weight and semigroup, one can construct and further analyze in detail a weak solution to the stochastic differential equation combining variational techniques, regularity theory for partial differential equations, potential, and generalized Dirichlet form theory. Under classical-like or various other criteria for non-explosion we obtain as one of our main applications the existence of a pathwise unique and strong solution with an infinite lifetime. These results substantially supplement the classical case of locally Lipschitz or monotone coefficients.We further treat other types of uniqueness and non-uniqueness questions, such as uniqueness and non-uniqueness of the mentioned weights and uniqueness in law, in a certain sense, of the solution.
EAN 9789811938306
ISBN 981193830X
Binding Paperback / softback
Publisher Springer Verlag, Singapore
Publication date August 28, 2022
Pages 126
Language English
Dimensions 235 x 155
Country Singapore
Authors Lee, Haesung; Stannat Wilhelm; Trutnau, Gerald
Illustrations 1 Illustrations, black and white; XV, 126 p. 1 illus.
Edition 1st ed. 2022
Series SpringerBriefs in Probability and Mathematical Statistics