Enhancing Variants of K-Means

Enhancing Variants of K-Means

AngličtinaMäkká väzbaTlač na objednávku
Chilamakur, Raghavendra
LAP Lambert Academic Publishing
EAN: 9786139983803
Tlač na objednávku
Predpokladané dodanie v pondelok, 20. januára 2025
42,10 €
Bežná cena: 46,78 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

Clustering analysis is one of the most commonly used data processing algorithms. Over half a century, K-means remains the most popular clustering algorithm because of its simplicity. Traditional K-means clustering tries to assign n data objects to k clusters starting with random initial centers. However, most of the k- means variants tend to compute distance of each data point to each cluster centroid for every iteration. We propose a fast heuristic to overcome this bottleneck with only marginal increase in Mean Squared Error (MSE). We observe that across all iterations of K-means, a data point changes its membership only among a small subset of clusters. Our heuristic predicts such clusters for each data point by looking at nearby clusters after the first iteration of k-means. We augment well-known variants of k- means like Enhanced K-means and K-means with Triangle Inequality using our heuristic to demonstrate its effectiveness. For various datasets, our heuristic achieves speed-up of up-to 3 times when compared to efficient variants of k-means.
EAN 9786139983803
ISBN 6139983800
Typ produktu Mäkká väzba
Vydavateľ LAP Lambert Academic Publishing
Stránky 64
Jazyk English
Rozmery 220 x 150
Autori Chilamakur, Raghavendra; Francis, Reuben Bernard; Kypa, Rajendra Prasad