Cross Disciplinary Biometric Systems

Cross Disciplinary Biometric Systems

AngličtinaMäkká väzbaTlač na objednávku
Liu Chengjun
Springer, Berlin
EAN: 9783642428401
Tlač na objednávku
Predpokladané dodanie v utorok, 15. júla 2025
144,91 €
Bežná cena: 161,02 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

Cross disciplinary biometric systems help boost the performance of the conventional systems. Not only is the recognition accuracy significantly improved, but also the robustness of the systems is greatly enhanced in the challenging environments, such as varying illumination conditions. By leveraging the cross disciplinary technologies, face recognition systems, fingerprint recognition systems, iris recognition systems, as well as image search systems all benefit in terms of recognition performance.  Take face recognition for an example, which is not only the most natural way human beings recognize the identity of each other, but also the least privacy-intrusive means because people show their face publicly every day. Face recognition systems display superb performance when they capitalize on the innovative ideas across color science, mathematics, and computer science (e.g., pattern recognition, machine learning, and image processing). The novel ideas lead to the development of new color models and effective color features in color science; innovative features from wavelets and statistics, and new kernel methods and novel kernel models in mathematics; new discriminant analysis frameworks, novel similarity measures, and new image analysis methods, such as fusing multiple image features from frequency domain, spatial domain, and color domain in computer science; as well as system design, new strategies for system integration, and different fusion strategies, such as the feature level fusion, decision level fusion, and new fusion strategies with novel similarity measures.
EAN 9783642428401
ISBN 3642428401
Typ produktu Mäkká väzba
Vydavateľ Springer, Berlin
Dátum vydania 8. mája 2014
Stránky 228
Jazyk English
Rozmery 235 x 155
Krajina Germany
Čitatelia Professional & Scholarly
Autori Liu Chengjun; Mago Vijay Kumar
Ilustrácie XVI, 228 p.
Edícia 2012 ed.
Séria Intelligent Systems Reference Library
Informácie o výrobcovi
Kontaktné informácie výrobcu momentálne nie sú dostupné online, na náprave intenzívne pracujeme. Ak informáciu potrebujete, napíšte nám na helpdesk@megabooks.sk, radi vám ju poskytneme.