Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms

Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms

AngličtinaPevná väzbaTlač na objednávku
Schütze, Oliver
Springer, Berlin
EAN: 9783030637729
Tlač na objednávku
Predpokladané dodanie v utorok, 10. decembra 2024
141,69 €
Bežná cena: 157,44 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

This book presents an overview of archiving strategies developed over the last years by the authors that deal with suitable approximations of the sets of optimal and nearly optimal solutions of multi-objective optimization problems by means of stochastic search algorithms. All presented archivers are analyzed with respect to the approximation qualities of the limit archives that they generate and the upper bounds of the archive sizes. The convergence analysis will be done using a very broad framework that involves all existing stochastic search algorithms and that will only use minimal assumptions on the process to generate new candidate solutions. All of the presented archivers can effortlessly be coupled with any set-based multi-objective search algorithm such as multi-objective evolutionary algorithms, and the resulting hybrid method takes over the convergence properties of the chosen archiver. This book hence targets at all algorithm designers and practitioners in the fieldof multi-objective optimization.


EAN 9783030637729
ISBN 3030637727
Typ produktu Pevná väzba
Vydavateľ Springer, Berlin
Dátum vydania 5. januára 2021
Stránky 234
Jazyk English
Rozmery 235 x 155
Krajina Switzerland
Čitatelia Professional & Scholarly
Autori Hernandez, Carlos; Schutze, Oliver
Ilustrácie XIII, 234 p. 130 illus., 44 illus. in color.
Edícia 1st ed. 2021
Séria Studies in Computational Intelligence