Self-Adaptive Heuristics for Evolutionary Computation

Self-Adaptive Heuristics for Evolutionary Computation

AngličtinaMäkká väzbaTlač na objednávku
Kramer Oliver
Springer, Berlin
EAN: 9783642088780
Tlač na objednávku
Predpokladané dodanie v utorok, 18. februára 2025
96,61 €
Bežná cena: 107,34 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves.

This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.

EAN 9783642088780
ISBN 3642088783
Typ produktu Mäkká väzba
Vydavateľ Springer, Berlin
Dátum vydania 28. októbra 2010
Stránky 182
Jazyk English
Rozmery 235 x 155
Krajina Germany
Čitatelia Professional & Scholarly
Autori Kramer Oliver
Ilustrácie XII, 182 p. 39 illus.
Edícia Softcover reprint of hardcover 1st ed. 2008
Séria Studies in Computational Intelligence