Stochastic Analysis for Gaussian Random Processes and Fields

Stochastic Analysis for Gaussian Random Processes and Fields

AngličtinaMäkká väzba
Mandrekar Vidyadhar S.
Taylor & Francis Ltd
EAN: 9780367738143
Skladom u distribútora
Predpokladané dodanie v utorok, 11. februára 2025
49,47 €
Bežná cena: 54,97 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs).

The book begins with preliminary results on covariance and associated RKHS before introducing the Gaussian process and Gaussian random fields. The authors use chaos expansion to define the Skorokhod integral, which generalizes the Itô integral. They show how the Skorokhod integral is a dual operator of Skorokhod differentiation and the divergence operator of Malliavin. The authors also present Gaussian processes indexed by real numbers and obtain a Kallianpur–Striebel Bayes' formula for the filtering problem. After discussing the problem of equivalence and singularity of Gaussian random fields (including a generalization of the Girsanov theorem), the book concludes with the Markov property of Gaussian random fields indexed by measures and generalized Gaussian random fields indexed by Schwartz space. The Markov property for generalized random fields is connected to the Markov process generated by a Dirichlet form.

EAN 9780367738143
ISBN 0367738147
Typ produktu Mäkká väzba
Vydavateľ Taylor & Francis Ltd
Dátum vydania 18. decembra 2020
Stránky 201
Jazyk English
Rozmery 234 x 156
Krajina United Kingdom
Čitatelia Tertiary Education
Autori Gawarecki Leszek; Mandrekar Vidyadhar S.
Séria Chapman & Hall/CRC Monographs on Statistics and Applied Probability