Manifolds and Modular Forms

Manifolds and Modular Forms

AngličtinaMäkká väzba
Hirzebruch Friedrich
Vieweg+Teubner
EAN: 9783528164140
Titul je vypredaný u vydavateľa, predaj skončil
Neznámy dátum dodania
50,70 €
Bežná cena: 56,33 €
Zľava 10 %
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms". I wanted to develop the theory of "Elliptic Genera" and to learn it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word "genus" is meant in the sense of my book "Neue Topologische Methoden in der Algebraischen Geometrie" published in 1956: A genus is a homomorphism of the Thorn cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The A-genus equals the arithmetic genus of an algebraic manifold, provided the first Chern class of the manifold vanishes. According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure. The elliptic genera depend on a parameter. For special values of the parameter one obtains the signature and the A-genus. Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r (2) of the modular group; the two cusps 0 giving the signature and the A-genus. Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold.
EAN 9783528164140
ISBN 352816414X
Typ produktu Mäkká väzba
Vydavateľ Vieweg+Teubner
Dátum vydania 1. januára 1994
Stránky 212
Jazyk English
Rozmery 229 x 162
Krajina Germany
Čitatelia Professional & Scholarly
Autori Berger, Thomas; Hirzebruch Friedrich; Jung Rainer
Ilustrácie XI, 212 p.
Prekladatelia Translated by Landweber, Peter S.
Edícia 2nded. 1994
Séria Aspects of Mathematics