Elliptic Curves over Number Fields with Prescribed Reduction Type

Elliptic Curves over Number Fields with Prescribed Reduction Type

NemčinaMäkká väzba
Laska, Michael
Vieweg+Teubner
EAN: 9783528085698
Na objednávku
Predpokladané dodanie v utorok, 3. decembra 2024
51,83 €
Bežná cena: 57,59 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

Let K be an algebraic number field. The function attaching to each elliptic curve over K its conductor is constant on isoger. y classes of elliptic curves over K (for the definitions see chapter 1). ~Ioreover, for a given ideal a in OK the number of isogeny classes of elliptic curves over K with conductor a is finite. In these notes we deal with the following problem: How can one explicitly construct a set of representatives for the isogeny classes of elliptic curves over K with conductor a for a given ideal a in OK? The conductor of an elliptic curve over K is a numerical invariant which measures, in some sense, the badness of the reduction of the elliptic curve modulo the prime ideals in OK' It plays an important role in the famous Weil-Langlands conjecture on the connection between elliptic curves over K and congruence subgroups in 5L2(OK) In case K ~ this connection can be stated as follows. For any ideal a = (N) in ~ let ro(N) be the congruence subgroup ro(N) { (: ~) E 5L2 (~) c E (N) } of 5L2 (~) and let 52 (fo (N" be the space of cusp forms of weight 2 for r 0 (N) Now Weil conjectured that there exists a bijection between the rational normalized eigenforms in 52(ro(N" for the Heckealgebra and the - 2 - Lsug~ny classes uf elliptic curves over ~ with conductor a = (N) .
EAN 9783528085698
ISBN 352808569X
Typ produktu Mäkká väzba
Vydavateľ Vieweg+Teubner
Dátum vydania 1. januára 1983
Stránky 213
Jazyk German
Rozmery 245 x 171 x 12
Krajina Germany
Čitatelia General
Autori Laska, Michael
Ilustrácie 213 S.
Séria Aspects of Mathematics