Machine Learning for Text

Machine Learning for Text

AngličtinaPevná väzbaTlač na objednávku
Aggarwal Charu C.
Springer, Berlin
EAN: 9783030966225
Tlač na objednávku
Predpokladané dodanie v utorok, 18. februára 2025
72,45 €
Bežná cena: 80,50 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

This second edition textbook covers a coherently organized framework for text analytics, which integrates material drawn from the intersecting topics of information retrieval, machine learning, and natural language processing. Particular importance is placed on deep learning methods. The chapters of this book span three broad categories:1. Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for text analytics such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.

2. Domain-sensitive learning and information retrieval: Chapters 8 and 9 discuss learning models in heterogeneous settings such as a combination of text with multimedia or Web links. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. 

3. Natural language processing: Chapters 10 through 16 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, transformers, pre-trained language models, text summarization, information extraction, knowledge graphs, question answering, opinion mining, text segmentation, and event detection. 

Compared to the first edition, this second edition textbook (which targets mostly advanced level students majoring in computer science and math) has substantially more material on deep learning and natural language processing. Significant focus is placed on topics like transformers, pre-trained language models, knowledge graphs, and question answering.

EAN 9783030966225
ISBN 3030966224
Typ produktu Pevná väzba
Vydavateľ Springer, Berlin
Dátum vydania 5. mája 2022
Stránky 565
Jazyk English
Rozmery 254 x 178
Krajina Switzerland
Čitatelia Professional & Scholarly
Autori Aggarwal Charu C.
Ilustrácie 5 Illustrations, color; 87 Illustrations, black and white; XXIII, 565 p. 92 illus., 5 illus. in color.
Edícia 2nd ed. 2022