Regression with Linear Predictors

Regression with Linear Predictors

AngličtinaPevná väzbaTlač na objednávku
Andersen Per Kragh
Springer-Verlag New York Inc.
EAN: 9781441971692
Tlač na objednávku
Predpokladané dodanie v utorok, 17. decembra 2024
50,70 €
Bežná cena: 56,33 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

This is a book about regression analysis, that is, the situation in statistics where the distribution of a response (or outcome) variable is related to - planatory variables (or covariates). This is an extremely common situation in the application of statistical methods in many ?elds, andlinear regression,- gistic regression, and Cox proportional hazards regression are frequently used for quantitative, binary, and survival time outcome variables, respectively. Several books on these topics have appeared and for that reason one may well ask why we embark on writing still another book on regression. We have two main reasons for doing this: 1. First, we want to highlightsimilaritiesamonglinear,logistic,proportional hazards,andotherregressionmodelsthatincludealinearpredictor. These modelsareoftentreatedentirelyseparatelyintextsinspiteofthefactthat alloperationsonthemodelsdealingwiththelinearpredictorareprecisely the same, including handling of categorical and quantitative covariates, testing for linearity and studying interactions. 2. Second, we want to emphasize that, for any type of outcome variable, multiple regression models are composed of simple building blocks that areaddedtogetherinthelinearpredictor:thatis,t-tests,one-wayanalyses of variance and simple linear regressions for quantitative outcomes, 2×2, 2×(k+1) tables and simple logistic regressions for binary outcomes, and 2-and (k+1)-sample logrank testsand simple Cox regressionsfor survival data. Thishastwoconsequences. Allthesesimpleandwellknownmethods can be considered as special cases of the regression models. On the other hand, the e?ect of a single explanatory variable in a multiple regression model can be interpreted in a way similar to that obtained in the simple analysis, however, now valid only forthe other explanatory variables in the model “held ?xed”.
EAN 9781441971692
ISBN 1441971696
Typ produktu Pevná väzba
Vydavateľ Springer-Verlag New York Inc.
Dátum vydania 23. júla 2010
Stránky 494
Jazyk English
Rozmery 235 x 155
Krajina United States
Čitatelia General
Autori Andersen Per Kragh; Skovgaard Lene Theil
Ilustrácie IX, 494 p.
Séria Statistics for Biology and Health