Introduction to Operators on the Hardy-Hilbert Space

Introduction to Operators on the Hardy-Hilbert Space

AngličtinaMäkká väzbaTlač na objednávku
Martinez-Avendano Ruben A.
Springer-Verlag New York Inc.
EAN: 9781441922533
Tlač na objednávku
Predpokladané dodanie v utorok, 22. júla 2025
53,77 €
Bežná cena: 59,75 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

The great mathematician G. H. Hardy told us that “Beauty is the ?rst test: there is no permanent place in the world for ugly mathematics” (see [24, p. 85]). It is clear why Hardy loved complex analysis: it is a very beautiful partofclassicalmathematics. ThetheoryofHilbertspacesandofoperatorson themisalmostasclassicalandisperhapsasbeautifulascomplexanalysis. The studyoftheHardy–Hilbertspace(aHilbertspacewhoseelementsareanalytic functions), and of operators on that space, combines these two subjects. The interplay produces a number of extraordinarily elegant results. For example, very elementary concepts from Hilbert space provide simple proofs of the Poisson integral (Theorem 1. 1. 21 below) and Cauchy integral (Theorem 1. 1. 19) formulas. The fundamental theorem about zeros of fu- tions in the Hardy–Hilbert space (Corollary 2. 4. 10) is the central ingredient of a beautiful proof that every continuous function on [0,1] can be uniformly approximated by polynomials with prime exponents (Corollary 2. 5. 3). The Hardy–Hilbert space context is necessary to understand the structure of the invariant subspaces of the unilateral shift (Theorem 2. 2. 12). Conversely, pr- erties of the unilateral shift operator are useful in obtaining results on f- torizations of analytic functions (e. g. , Theorem 2. 3. 4) and on other aspects of analytic functions (e. g. , Theorem 2. 3. 3). The study of Toeplitz operators on the Hardy–Hilbert space is the most natural way of deriving many of the properties of classical Toeplitz mat- ces (e. g. , Theorem 3. 3.
EAN 9781441922533
ISBN 1441922539
Typ produktu Mäkká väzba
Vydavateľ Springer-Verlag New York Inc.
Dátum vydania 28. novembra 2010
Stránky 220
Jazyk English
Rozmery 235 x 155
Krajina United States
Čitatelia Professional & Scholarly
Autori Martinez-Avendano Ruben A.; Rosenthal Peter
Ilustrácie XII, 220 p.
Edícia Softcover reprint of hardcover 1st ed. 2007
Séria Graduate Texts in Mathematics
Informácie o výrobcovi
Kontaktné informácie výrobcu momentálne nie sú dostupné online, na náprave intenzívne pracujeme. Ak informáciu potrebujete, napíšte nám na helpdesk@megabooks.sk, radi vám ju poskytneme.