Bayesian Machine Learning in Geotechnical Site Characterization

Bayesian Machine Learning in Geotechnical Site Characterization

AngličtinaPevná väzbaTlač na objednávku
Ching Jianye
Taylor & Francis Ltd
EAN: 9781032314419
Tlač na objednávku
Predpokladané dodanie v utorok, 25. februára 2025
177,49 €
Bežná cena: 197,21 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

Bayesian data analysis and modelling linked with machine learning offers a new tool for handling geotechnical data. This book presents recent advancements made by the author in the area of probabilistic geotechnical site characterization.

Two types of correlation play central roles in geotechnical site characterization: cross-correlation among soil properties and spatial-correlation in the underground space. The book starts with the introduction of Bayesian notion of probability “degree of belief”, showing that well-known probability axioms can be obtained by Boolean logic and the definition of plausibility function without the use of the notion “relative frequency”. It then reviews probability theories and useful probability models for cross-correlation and spatial correlation. Methods for Bayesian parameter estimation and prediction are also presented, and the use of these methods demonstrated with geotechnical site characterization examples.

Bayesian Machine Learning in Geotechnical Site Characterization suits consulting engineers and graduate students in the area.

EAN 9781032314419
ISBN 1032314419
Typ produktu Pevná väzba
Vydavateľ Taylor & Francis Ltd
Dátum vydania 7. augusta 2024
Stránky 176
Jazyk English
Rozmery 234 x 156
Krajina United Kingdom
Autori Ching Jianye
Ilustrácie 14 Tables, black and white; 78 Line drawings, black and white; 78 Illustrations, black and white
Séria Challenges in Geotechnical and Rock Engineering