Graph Learning Techniques

Graph Learning Techniques

AngličtinaEbook
Shan, Baoling
CRC Press
EAN: 9781040302231
Dostupné online
82,38 €
Bežná cena: 91,53 €
Zľava 10 %
ks

Podrobné informácie

This comprehensive guide addresses key challenges at the intersection of data science, graph learning, and privacy preservation. It begins with foundational graph theory, covering essential definitions, concepts, and various types of graphs. The book bridges the gap between theory and application, equipping readers with the skills to translate theoretical knowledge into actionable solutions for complex problems. It includes practical insights into brain network analysis and the dynamics of COVID-19 spread. The guide provides a solid understanding of graphs by exploring different graph representations and the latest advancements in graph learning techniques. It focuses on diverse graph signals and offers a detailed review of state-of-the-art methodologies for analyzing these signals. A major emphasis is placed on privacy preservation, with comprehensive discussions on safeguarding sensitive information within graph structures. The book also looks forward, offering insights into emerging trends, potential challenges, and the evolving landscape of privacy-preserving graph learning. This resource is a valuable reference for advance undergraduate and postgraduate students in courses related to Network Analysis, Privacy and Security in Data Analytics, and Graph Theory and Applications in Healthcare.
EAN 9781040302231
ISBN 1040302238
Typ produktu Ebook
Vydavateľ CRC Press
Dátum vydania 26. februára 2025
Stránky 180
Jazyk English
Krajina Uruguay
Autori Dutkiewicz, Eryk; Liu, Ren Ping; Ni, Wei; Shan, Baoling; Yuan, Xin
Informácie o výrobcovi
Kontaktné informácie výrobcu momentálne nie sú dostupné online, na náprave intenzívne pracujeme. Ak informáciu potrebujete, napíšte nám na helpdesk@megabooks.sk, radi vám ju poskytneme.