Stochastic Analysis for Gaussian Random Processes and Fields

Stochastic Analysis for Gaussian Random Processes and Fields

AngličtinaPevná väzbaTlač na objednávku
Mandrekar Vidyadhar S.
Taylor & Francis Inc
EAN: 9781498707817
Tlač na objednávku
Predpokladané dodanie v utorok, 11. februára 2025
104,33 €
Bežná cena: 115,93 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs).

The book begins with preliminary results on covariance and associated RKHS before introducing the Gaussian process and Gaussian random fields. The authors use chaos expansion to define the Skorokhod integral, which generalizes the Itô integral. They show how the Skorokhod integral is a dual operator of Skorokhod differentiation and the divergence operator of Malliavin. The authors also present Gaussian processes indexed by real numbers and obtain a Kallianpur–Striebel Bayes' formula for the filtering problem. After discussing the problem of equivalence and singularity of Gaussian random fields (including a generalization of the Girsanov theorem), the book concludes with the Markov property of Gaussian random fields indexed by measures and generalized Gaussian random fields indexed by Schwartz space. The Markov property for generalized random fields is connected to the Markov process generated by a Dirichlet form.

EAN 9781498707817
ISBN 1498707815
Typ produktu Pevná väzba
Vydavateľ Taylor & Francis Inc
Dátum vydania 23. júna 2015
Stránky 202
Jazyk English
Rozmery 234 x 156
Krajina United States
Čitatelia General
Autori Gawarecki Leszek; Mandrekar Vidyadhar S.
Séria Chapman & Hall/CRC Monographs on Statistics and Applied Probability