Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

Periodic Solutions of First-Order Functional Differential Equations in Population Dynamics

AngličtinaMäkká väzbaTlač na objednávku
Padhi Seshadev
Springer, India, Private Ltd
EAN: 9788132235422
Tlač na objednávku
Predpokladané dodanie v utorok, 3. decembra 2024
50,70 €
Bežná cena: 56,33 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, and the environment.
EAN 9788132235422
ISBN 8132235428
Typ produktu Mäkká väzba
Vydavateľ Springer, India, Private Ltd
Dátum vydania 27. septembra 2016
Stránky 144
Jazyk English
Rozmery 235 x 155
Krajina India
Čitatelia Professional & Scholarly
Autori Graef John R.; Padhi Seshadev; Srinivasu P. D. N.
Ilustrácie XIV, 144 p. 8 illus.
Edícia Softcover reprint of the original 1st ed. 2014