Dimensionality Reduction with Unsupervised Nearest Neighbors

Dimensionality Reduction with Unsupervised Nearest Neighbors

AngličtinaMäkká väzbaTlač na objednávku
Kramer Oliver
Springer, Berlin
EAN: 9783662518953
Tlač na objednávku
Predpokladané dodanie v utorok, 4. februára 2025
96,61 €
Bežná cena: 107,34 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results.

 

EAN 9783662518953
ISBN 3662518953
Typ produktu Mäkká väzba
Vydavateľ Springer, Berlin
Dátum vydania 30. apríla 2017
Stránky 132
Jazyk English
Rozmery 235 x 155
Krajina Germany
Čitatelia Professional & Scholarly
Autori Kramer Oliver
Ilustrácie XII, 132 p. 48 illus., 45 illus. in color.
Edícia Softcover reprint of the original 1st ed. 2013
Séria Intelligent Systems Reference Library