Deep Learning Techniques for Music Generation

Deep Learning Techniques for Music Generation

AngličtinaPevná väzbaTlač na objednávku
Briot Jean-Pierre
Springer, Berlin
EAN: 9783319701622
Tlač na objednávku
Predpokladané dodanie v stredu, 15. januára 2025
141,69 €
Bežná cena: 157,44 €
Zľava 10 %
ks
Chcete tento titul ešte dnes?
kníhkupectvo Megabooks Banská Bystrica
nie je dostupné
kníhkupectvo Megabooks Bratislava
nie je dostupné
kníhkupectvo Megabooks Košice
nie je dostupné

Podrobné informácie

This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure.

The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.

EAN 9783319701622
ISBN 3319701622
Typ produktu Pevná väzba
Vydavateľ Springer, Berlin
Dátum vydania 20. novembra 2019
Stránky 284
Jazyk English
Rozmery 235 x 155
Krajina Switzerland
Čitatelia General
Autori Briot Jean-Pierre; Hadjeres, Gaetan; Pachet, Francois-David
Ilustrácie XXVIII, 284 p. 143 illus., 91 illus. in color.
Edícia 1st ed. 2020
Séria Computational Synthesis and Creative Systems